Slit modulates cerebrovascular inflammation and mediates neuroprotection against global cerebral ischemia.

نویسندگان

  • Tamer Altay
  • Bethann McLaughlin
  • Jane Y Wu
  • T S Park
  • Jeffrey M Gidday
چکیده

Cerebrovascular inflammation contributes to secondary brain injury following ischemia. Recent in vitro studies of cell migration and molecular guidance mechanisms have indicated that the Slit family of secreted proteins can exert repellant effects on leukocyte recruitment in response to chemoattractants. Utilizing intravital microscopy, we addressed the role of Slit in modulating leukocyte dynamics in the mouse cortical venular microcirculation in vivo following TNFalpha application or global cerebral ischemia. We also studied whether Slit affected neuronal survival in the mouse global ischemia model as well as in mixed neuronal-glial cultures subjected to oxygen-glucose deprivation. We found that systemically administered Slit significantly attenuated cerebral microvessel leukocyte-endothelial adherence occurring 4 h after TNFalpha and 24 h after global cerebral ischemia. Administration of RoboN, the soluble receptor for Slit, exacerbated the acute chemotactic response to TNFalpha. These findings are indicative of a tonic repellant effect of endogenous Slit in brain under acute proinflammatory conditions. Three days of continuous systemic administration of Slit following global ischemia significantly attenuated the delayed neuronal death of hippocampal CA1 pyramidal cells. Moreover, Slit abrogated neuronal death in mixed neuronal-glial cultures exposed to oxygen-glucose deprivation. The ability of Slit to reduce the recruitment of immune cells to ischemic brain and to provide cytoprotective effects suggests that this protein may serve as a novel anti-inflammatory and neuroprotective target for stroke therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P39: The Neuroprotection Effect of Erythropoietin in Cerebral Ischemia

Cerebral ischemia causes death of millions people all over the world, annually and also suffering more people from neurological deficits and neuromuscular disorders. In our country, 250 to 300 people experience mild to severe stroke, daily. In this study we reviewed 120 original paper selected from PubMED database. Our keywords were erythropoietin, anti-inflammatory, stroke, neuropathy and cere...

متن کامل

Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats

Objective(s): Paeoniflorin (PF) has anti-oxidation, anti-inflammation, anti-apoptosis, and neuroprotection pharmacological effects against ischemic injury. The aim of the present study was to investigate the neuroprotection mechanisms of PF in cerebral ischemia-reperfusion injury rats.Materials and Methods: We established an animal model of cerebral infarct by occlusion of the middle cerebral a...

متن کامل

Oxytocin mediates social neuroprotection after cerebral ischemia.

BACKGROUND AND PURPOSE The reduced incidence, morbidity, and mortality of stroke among humans with strong social support have been well-documented; however, the mechanisms underlying these socially mediated phenomena remain unknown, but may involve oxytocin (OT), a hormone that modulates some aspects of social behavior in humans and other animals. METHODS In the present study, adult male mice...

متن کامل

Endogenous ghrelin's role in hippocampal neuroprotection after global cerebral ischemia: does endogenous ghrelin protect against global stroke?

Ghrelin is a gastrointestinal hormone with a well-characterized role in feeding and metabolism. Recent evidence suggests that ghrelin may also be neuroprotective after injury in animal models of cerebral ischemia. Thus exogenous ghrelin treatment can improve cell survival, reduce infarct size, and rescue memory deficits in focal ischemia models, doing so by suppressing inflammation and apoptosi...

متن کامل

Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke

Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 207 2  شماره 

صفحات  -

تاریخ انتشار 2007